In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions.

نویسندگان

  • Artem Efremov
  • Ekaterina L Grishchuk
  • J Richard McIntosh
  • Fazly I Ataullakhanov
چکیده

Mitotic chromosome motions are driven by microtubules (MTs) and associated proteins that couple kinetochores to MT ends. A good coupler should ensure a high stability of attachment, even when the chromosome changes direction or experiences a large opposing force. The optimal coupler is also expected to be efficient in converting the energy of MT depolymerization into chromosome motility. As was shown years ago, a "sleeve"-based, chromosome-associated structure could, in principle, couple MT dynamics to chromosome motion. A recently identified kinetochore complex from yeast, the "Dam1" or "DASH" complex, may function as an encircling coupler in vivo. Some features of the Dam1 ring differ from those of the "sleeve," but whether these differences are significant has not been examined. Here, we analyze theoretically the biomechanical properties of encircling couplers that have properties of the Dam1/DASH complex, such as its large diameter and inward-directed extensions. We demonstrate that, if the coupler is modeled as a wide ring with links that bind the MT wall, its optimal performance is achieved when the linkers are flexible and their binding to tubulin dimers is strong. The diffusive movement of such a coupler is limited, but MT depolymerization can drive its motion via a "forced walk," whose features differ significantly from those of the mechanisms based on biased diffusion. Our analysis identifies key experimental parameters whose values should determine whether the Dam1/DASH ring moves via diffusion or a forced walk.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of segmented microtubules to study motions driven by the disassembling microtubule ends.

Microtubule depolymerization can provide force to transport different protein complexes and protein-coated beads in vitro. The underlying mechanisms are thought to play a vital role in the microtubule-dependent chromosome motions during cell division, but the relevant proteins and their exact roles are ill-defined. Thus, there is a growing need to develop assays with which to study such motilit...

متن کامل

Mitosis: Riding the Protofilament Curl

More than 50 years ago, microtubule depolymerization was proposed as the force responsible for chromosome movement. New studies measure the force produced by depolymerization and show that protein ring complexes can couple depolymerization to movement. These results have implications for anaphase chromosome motility and mitotic evolution.

متن کامل

Tubulin depolymerization may be an ancient biological motor.

The motions of mitotic chromosomes are complex and show considerable variety across species. A wealth of evidence supports the idea that microtubule-dependent motor enzymes contribute to this variation and are important both for spindle formation and for the accurate completion of chromosome segregation. Motors that walk towards the spindle pole are, however, dispensable for at least some polew...

متن کامل

Structure-function insights into the yeast Dam1 kinetochore complex.

Faithful segregation of genetic material during cell division requires the dynamic but robust attachment of chromosomes to spindle microtubules during all stages of mitosis. This regulated attachment occurs at kinetochores, which are complex protein organelles that are essential for cell survival and genome integrity. In budding yeast, in which a single microtubule attaches per kinetochore, a h...

متن کامل

The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility.

Mitotic chromosome segregation requires that kinetochores attach to microtubule polymers and harness microtubule dynamics to drive chromosome movement. In budding yeast, the Dam1 complex couples kinetochores with microtubule depolymerization. However, a metazoan homolog of the Dam1 complex has not been identified. To identify proteins that play a corresponding role at the vertebrate kinetochore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 48  شماره 

صفحات  -

تاریخ انتشار 2007